Background/Aim: Continuous venovenous hemofiltration with high-permeability hemofilters is a novel approach in the adjuvant therapy of septic patients. High-permeability hemofilters are characterized by an increased pore size which facilitates the filtration of inflammatory mediators. The present study examines whether intermittent high-permeability hemofiltration has an immunomodulatory effect on polymorphonuclear leukocytes and mononuclear cells. Methods: Twenty-eight septic patients with acute renal failure were randomly allocated to either receive intermittent high-permeability or conventional hemofiltration. Intermittent high-permeability hemofiltration consisted of a daily 12-hour course of high-permeability hemofiltration alternated by conventional hemofiltration. For high-permeability hemofiltration, a newly developed high-flux polyamide membrane (P2SH) with a nominal cutoff point of 60 kD was used. For conventional hemofiltration a high-flux polyamide hemofilter (Polyflux 11S, cutoff point 30 kD) was used. Results: The polymorphonuclear leukocyte phagocytosis activity before starting hemofiltration was almost double the rate of healthy controls in both groups (p < 0.001). The phagocytosis rate decreased significantly during the course of intermittent high-permeability hemofiltration (p < 0.05), whereas the values remained unchanged in the conventional hemofiltration group. Incubation of high-permeability filtrates with blood from healthy donors resulted in a significant induction of phagocytosis (p < 0.001), whereas conventional filtrates had no phagocytosis-stimulating effects. In addition, incubation of healthy-donor mononuclear cells with high-permeability but not conventional filtrates resulted in a significant tumor necrosis factor alpha release (p < 0.001). Conclusions: Intermittent high-permeability hemofiltration is a novel extracorporeal elimination modality which exhibits immunomodulatory effects on leukocytes, attenuating polymorphonuclear neutrophil phagocytosis. Further studies are necessary to elucidate whether these effects translate in a clinical improvement in patients suffering from sepsis.