2019
DOI: 10.1096/fj.201900048r
|View full text |Cite
|
Sign up to set email alerts
|

Neutrophil‐endothelial interactions of murine cells is not a good predictor of their interactions in human cells

Abstract: Abbreviations: bMFA, biomimetic microfluidic assay; BSA, bovine serum albumin; CFD, computational fluid dynamics; CFDA/SE, carboxyfluorescein diacetate succinimidyl ester; ELISA, enzyme-linked immunosorbent assay; fMLP, N-formylmethionyl-leucyl-phenylalanine; GIS, geographic information system; HBSS, Hank's Balanced Salt Solution; HUVEC, human umbilical vein endothelial cell; ICAM-1, intercellular adhesion molecule 1; ICAM-2, intercellular adhesion molecule 2; JAM-C, junctional adhesion molecule C; PKCδ, prote… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

3
24
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 13 publications
(27 citation statements)
references
References 73 publications
3
24
0
Order By: Relevance
“…Fluid Flow: 10 nL/min-10 µL/min Fluid shear: 0.001-2 Pa Blood-brain barrier (Prabhakarpandian et al, 2013;Deosarkar et al, 2015;Tang et al, 2018;Brown et al, 2019;Da Silva-Candal et al, 2019) Blood vessel (Silvani et al, 2019) Blood vessel: Microvascular network (Rosano et al, 2009;Prabhakarpandian et al, 2011;Lamberti et al, 2013) Cancer models (Tang et al, 2017;Terrell-Hall et al, 2017;Vu et al, 2019) Lung (Kolhar et al, 2013;Liu et al, 2019;Soroush et al, 2020) TissUse https://www.tissuse.com/en/ Fluid shear: 0.02-2 Pa Multi-tissue models: Intestine-Liver-Brain-Kidney (Ramme et al, 2019) Intestine-Liver-Skin-Kidney (Maschmeyer et al, 2015b) Liver-Brain (Materne et al, 2015) Liver-Intestine (Maschmeyer et al, 2015a) Liver-Kidney (Lin et al, 2020) Liver-Lung (Schimek et al, 2020) Liver-Pancreatic islets (Bauer et al, 2017) (Continued) Liver-Skin (Wagner et al, 2013) Liver-Skin-Vasculature (Maschmeyer et al, 2015a) Liver-Testis (Baert et al, 2020) Skin-Lung cancer (Hubner et al, 2018) Single tissue models: Blood vessels (Schimek et al, 2013;Maschmeyer et al, 2015b) Blood vessels: Micro capillaries (Hasenberg et al, 2015) Bone marrow (Sieber et al, 2018) Brain (Materne et al, 2015) Hair follicle biopsies (Atac et al, 2013) Intestine (Maschmeyer et al, 2015a) Kidney (Ramme et al, 2019) Liver (Maschmeyer et al, 2015a;Materne et al, 2015;…”
Section: Company Mechanical Stimulation Validated Modelsmentioning
confidence: 99%
See 1 more Smart Citation
“…Fluid Flow: 10 nL/min-10 µL/min Fluid shear: 0.001-2 Pa Blood-brain barrier (Prabhakarpandian et al, 2013;Deosarkar et al, 2015;Tang et al, 2018;Brown et al, 2019;Da Silva-Candal et al, 2019) Blood vessel (Silvani et al, 2019) Blood vessel: Microvascular network (Rosano et al, 2009;Prabhakarpandian et al, 2011;Lamberti et al, 2013) Cancer models (Tang et al, 2017;Terrell-Hall et al, 2017;Vu et al, 2019) Lung (Kolhar et al, 2013;Liu et al, 2019;Soroush et al, 2020) TissUse https://www.tissuse.com/en/ Fluid shear: 0.02-2 Pa Multi-tissue models: Intestine-Liver-Brain-Kidney (Ramme et al, 2019) Intestine-Liver-Skin-Kidney (Maschmeyer et al, 2015b) Liver-Brain (Materne et al, 2015) Liver-Intestine (Maschmeyer et al, 2015a) Liver-Kidney (Lin et al, 2020) Liver-Lung (Schimek et al, 2020) Liver-Pancreatic islets (Bauer et al, 2017) (Continued) Liver-Skin (Wagner et al, 2013) Liver-Skin-Vasculature (Maschmeyer et al, 2015a) Liver-Testis (Baert et al, 2020) Skin-Lung cancer (Hubner et al, 2018) Single tissue models: Blood vessels (Schimek et al, 2013;Maschmeyer et al, 2015b) Blood vessels: Micro capillaries (Hasenberg et al, 2015) Bone marrow (Sieber et al, 2018) Brain (Materne et al, 2015) Hair follicle biopsies (Atac et al, 2013) Intestine (Maschmeyer et al, 2015a) Kidney (Ramme et al, 2019) Liver (Maschmeyer et al, 2015a;Materne et al, 2015;…”
Section: Company Mechanical Stimulation Validated Modelsmentioning
confidence: 99%
“…Pulmonary surfactant production is enhanced within the chip further promoting epithelium integrity and barrier function while functioning as an important defense mechanism against bacterial infection ( Thacker et al, 2020 ). Several commercial systems have been used to generate lung-on-a-chip models that mimic the complex solid and fluid microenvironment of the airway epithelium such as SynVivo’s SynALI lung model which comprises an apical channel functionalized with lung epithelial cells and surrounded by “vasculature” comprised of endothelial cells separated by a porous scaffold ( Kolhar et al, 2013 ; Liu et al, 2019 ; Soroush et al, 2020 ). This structure allows the formation of airway tubules through ALI culture within the apical channel that transport mucus and are maintained by the surrounding endothelium ( Kolhar et al, 2013 ; Liu et al, 2019 ; Soroush et al, 2020 ).…”
Section: Incorporation Of Biomechanical Cues In Ooc Models For Differmentioning
confidence: 99%
“…Surprisingly, in contrast to HLMVEC, ICAM-1, was not upregulated in TNF-activated MLMVEC. As ICAM-1 is an important regulator of leukocyte migration, our studies indicate that leukocyte-endothelial cell interaction may be regulated differently in mouse and human lung endothelia [47].…”
Section: Endothelium Heterogeneity Across Speciesmentioning
confidence: 81%
“…In vitro model cell systems have been used by several groups to investigate EC species differences [47,48]. Using a novel biomimetic microphysiological system (see description in Section 4.3), we examined human and mouse lung microvascular EC (HLMVEC and MLMVEC, respectively) under physiologically relevant flow conditions [47].…”
Section: Endothelium Heterogeneity Across Speciesmentioning
confidence: 99%
See 1 more Smart Citation