Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose Currently, assessing trauma severity alone in geriatric trauma patients (GTPs) cannot accurately predict the risk of serious adverse outcomes during hospitalization. As an emerging concept in recent years, frailty syndrome is closely related to the poor prognosis of many diseases in elderly patients, including trauma. A logistic model for predicting adverse outcomes in elderly trauma patients during hospitalization was constructed in elderly patients, and the predictive efficacy of the model was verified. Patients and Methods Trauma patients aged ≥65 years between June 2020 and September 2021 were selected and randomly divided into a training set and validation set at a ratio of 3:1. Mid arm muscle circumference (MAMC) was measured to determine the degree of frailty. LASSO regression was used to screen appropriate variables for the construction of a prognostic model. The logistic regression model was established and presented in the form of a nomogram. Calibration curves and ROC curves were used to verify the performance of the model. Results A total of 209 patients were enrolled, including 143 (68.4%) males and 66 (31.6%) females, with an average age of 70.8 ± 4.8 years. Ageless Charlson comorbidity index, BT unit, ISS, GCS, MAMC, prealbumin and lactic acid levels were screened by LASSO regression to construct a prognostic model. The AUC of the ROC analysis prediction model was 0.89 (95% CI 0.80–0.97) in the validation set. The results of the Hosmer–Lemeshow test for the validation set were χ2 = 11.23, P = 0.189. Conclusion The prognostic model of adverse outcomes in GTPs has good accuracy and differentiation, which can improve the prediction results of risk stratification of GTPs during hospitalization by medical staff and provide a new idea for prognostic prediction.
Purpose Currently, assessing trauma severity alone in geriatric trauma patients (GTPs) cannot accurately predict the risk of serious adverse outcomes during hospitalization. As an emerging concept in recent years, frailty syndrome is closely related to the poor prognosis of many diseases in elderly patients, including trauma. A logistic model for predicting adverse outcomes in elderly trauma patients during hospitalization was constructed in elderly patients, and the predictive efficacy of the model was verified. Patients and Methods Trauma patients aged ≥65 years between June 2020 and September 2021 were selected and randomly divided into a training set and validation set at a ratio of 3:1. Mid arm muscle circumference (MAMC) was measured to determine the degree of frailty. LASSO regression was used to screen appropriate variables for the construction of a prognostic model. The logistic regression model was established and presented in the form of a nomogram. Calibration curves and ROC curves were used to verify the performance of the model. Results A total of 209 patients were enrolled, including 143 (68.4%) males and 66 (31.6%) females, with an average age of 70.8 ± 4.8 years. Ageless Charlson comorbidity index, BT unit, ISS, GCS, MAMC, prealbumin and lactic acid levels were screened by LASSO regression to construct a prognostic model. The AUC of the ROC analysis prediction model was 0.89 (95% CI 0.80–0.97) in the validation set. The results of the Hosmer–Lemeshow test for the validation set were χ2 = 11.23, P = 0.189. Conclusion The prognostic model of adverse outcomes in GTPs has good accuracy and differentiation, which can improve the prediction results of risk stratification of GTPs during hospitalization by medical staff and provide a new idea for prognostic prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.