This article provides a representation of the double inverted pendulum system that is shaped and regulated in response to torque application at the top rather than the bottom of the pendulum, given that most researchers have controlled the double inverted pendulum based on the lower part or the base. To achieve this objective, we designed a dynamic Lagrangian conceptualization of the double inverted pendulum and a state feedback representation based on the simple convex polytypic transformation. Finally, we used the fuzzy state feedback approach to linearize the mathematical nonlinear model and to develop a fuzzy controller
H
∞
, given its great ability to simplify nonlinear systems in order to reduce the error rate and to increase precision. In our virtual conceptualization of the inverted pendulum, we used MATLAB software to simulate the movement of the system before applying a command on the upper part of the system to check its stability. Concerning the nonlinearities of the system, we have found a state feedback fuzzy control approach. Overall, the simulation results have shown that the fuzzy state feedback model is very efficient and flexible as it can be modified in different positions.