We prove that the stabilizer fidelity is multiplicative for the tensor product of an arbitrary number of single-qubit states. We also show that the relative entropy of magic becomes additive if all the single-qubit states but one belong to a symmetry axis of the stabilizer octahedron. We extend the latter results to include all the α-z Rényi relative entropy of magic. This allows us to identify a continuous set of magic monotones that are additive for single-qubit states. We also show that all the monotones mentioned above are additive for several standard two and three-qubit states subject to depolarizing noise. Finally, we obtain closed-form expressions for several states and tighter lower bounds for the overhead of probabilistic one-shot magic state distillation.