Practical Aspects of Computational Chemistry II 2012
DOI: 10.1007/978-94-007-0923-2_8
|View full text |Cite
|
Sign up to set email alerts
|

New Advances in QSPR/QSAR Analysis of Nitrocompounds: Solubility, Lipophilicity, and Toxicity

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2014
2014
2022
2022

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 86 publications
0
2
0
1
Order By: Relevance
“…They were often used to predict thermodynamic properties of particular chemical families of compounds [28]. The group contribution methods have also been developed to predict the values of fus H ∆ for different types of organic compounds [29][30][31][32][33].…”
Section: Introductionmentioning
confidence: 99%
“…They were often used to predict thermodynamic properties of particular chemical families of compounds [28]. The group contribution methods have also been developed to predict the values of fus H ∆ for different types of organic compounds [29][30][31][32][33].…”
Section: Introductionmentioning
confidence: 99%
“…У комплексі всі ці характеристики визначають екологічну небезпеку цих сполук. Зважаючи на актуальність оборонної тематики, ми плануємо розробити комп'ютерну експертну систему для прогнозування (позаекспериментального скринінгу) високоенергетичних сполук військового призначення (зокрема, вибухівки) щодо їх шкідливого впливу на навколишнє середовище та організм людини і тварин [5].…”
Section: хемоінформатика як ефективний інструмент прогнозування і кон...unclassified
“…Quantitative structure-property relationships (QSPR) [19] has been recently introduced to predict melting points, it can be used to predict physicochemical parameters based on the structure of an organic compound. They connect physical or chemical properties to a set of molecular descriptors, which have developed relationships for use in different fields [19]. However, the main aim of QSPR is the identification of the appropriate set of descriptors that allow the desired attribute of the compound to be adequately predicted.…”
Section: Introductionmentioning
confidence: 99%