2008
DOI: 10.4064/fm201-1-1
|View full text |Cite
|
Sign up to set email alerts
|

New algebras of functions on topological groups arising from G-spaces

Abstract: Abstract. For a topological group G we introduce the algebra SU C(G) of strongly uniformly continuous functions. We show that SU C(G) contains the algebra W AP (G) of weakly almost periodic functions as well as the algebras LE(G) and Asp(G) of locally equicontinuous and Asplund functions respectively. For the Polish groups of order preserving homeomorphisms of the unit interval and of isometries of the Urysohn space of diameter 1, we show that SU C(G) is trivial. We introduce the notion of fixed point on a cla… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
30
0
1

Year Published

2009
2009
2022
2022

Publication Types

Select...
6
2

Relationship

1
7

Authors

Journals

citations
Cited by 30 publications
(31 citation statements)
references
References 39 publications
0
30
0
1
Order By: Relevance
“…In [GM,Question 10.5], Glasner and Megrelishvili ask for the existence of a group which is WAP trivial but does not contain a copy of Homeo + ([0, 1]). In fact, Homeo(L) is such a group: by [BK], Homeo(L) is totally disconnected (and therefore does not contain a copy of Homeo + ([0, 1])) and by the above remark, it is WAP trivial.…”
Section: Corollary 410 Let H Be a Roelcke Precompact Subgroup Of S mentioning
confidence: 99%
See 1 more Smart Citation
“…In [GM,Question 10.5], Glasner and Megrelishvili ask for the existence of a group which is WAP trivial but does not contain a copy of Homeo + ([0, 1]). In fact, Homeo(L) is such a group: by [BK], Homeo(L) is totally disconnected (and therefore does not contain a copy of Homeo + ([0, 1])) and by the above remark, it is WAP trivial.…”
Section: Corollary 410 Let H Be a Roelcke Precompact Subgroup Of S mentioning
confidence: 99%
“…That S ∞ is Roelcke precompact was first shown by Roelcke-Dierolf [RD]; the compactification was calculated by Uspenskij [U4] and Glasner-Megrelishvili [GM,Section 12].…”
Section: 2mentioning
confidence: 99%
“…Если G -топологическая группа, то ЛИС на пространстве C * (G) соответствуют инвариантным вероятностным мерам на βG. Аналогично, для топологической группы G левоинвариантные средние на пространстве C * ru (G) соответствуют инвариантным вероятностным мерам на γ u G. Отметим, что Е. Гласнер и М. Г. Мегрелишвили изучали [21] и другие специальные эквивариантные компактные расширения группы, т. е. некоторые специальные эквивариантные подалгебры алгебры C * ru (G). Для основного рассматриваемого примера, группы J (k), где кольцо k бес-конечно, мы не можем утверждать, что инвариантные вероятностные меры на βJ (k) существуют.…”
Section: Introductionunclassified
“…The topological concept of fragmentability comes in fact from Banach space theory (Jayne-Rogers [23]). For dynamical applications of fragmentability, we refer to [28,29,30,13,14,15]. Fact 1.4 suggests the following general definition.…”
Section: Fact 14 ([16])mentioning
confidence: 99%
“…The material in this section is mostly well known. For more details and undefined concepts, see for example [13,12,14].…”
Section: Dynamical Background: G-spaces and Banach Representationsmentioning
confidence: 99%