This research work studied and evaluated the effects of reheat treatment conditions, which consisted of solution treatment at a temperature of 1448 K for 14.4 ks, followed by air cooling and precipitate aging at a temperature of 1118 K for 86.4 ks, on the microstructural rejuvenation or refurbishment of various modified alloys based on the cast nickel base superalloy, GTD-111 with aluminum, nickel and/or cobalt additions after long term heating at temperatures of 1173 K and 1273 K for 1440 ks. From the results obtained, it was found that the reheat treatment conditions applied are more suitable for microstructures after long term heating at a temperature of 1173 K. However, such reheat treatment conditions could not fully return reheat treated microstructures to microstructures similar to those of previous research work. It seems that the selected solutioning temperatures and/or times were not sufficient to completely dissolve all coarse gamma prime particles after long term heating for all samples with alloying additions. Typical size and area fractions of the gamma prime particles of the reheat treated microstructures are very similar to those of the original alloyed ones but with lower values, especially those related to the size of the gamma prime particles.