2014 IEEE International Ultrasonics Symposium 2014
DOI: 10.1109/ultsym.2014.0599
|View full text |Cite
|
Sign up to set email alerts
|

New approach for objective cataract classification based on ultrasound techniques using multiclass SVM classifiers

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
1

Year Published

2016
2016
2024
2024

Publication Types

Select...
7
2
1

Relationship

0
10

Authors

Journals

citations
Cited by 20 publications
(7 citation statements)
references
References 28 publications
0
6
0
1
Order By: Relevance
“…Ultrasound Images & Digital Camera Images. For ultrasound images, researchers adopt the Fourier Transform (FT) method, textural analysis method, and probability density to extract features [6,8,7]. The procedures to extract features from digital camera images is the same to slit lamp images, but different image processing methods are used such as Gabor Wavelet transform, Gray level Co-occurrence Matrix (GLCM), image morphological feature, and Gaussian filter [87,33,86,34].…”
Section: Feature Extractionmentioning
confidence: 99%
“…Ultrasound Images & Digital Camera Images. For ultrasound images, researchers adopt the Fourier Transform (FT) method, textural analysis method, and probability density to extract features [6,8,7]. The procedures to extract features from digital camera images is the same to slit lamp images, but different image processing methods are used such as Gabor Wavelet transform, Gray level Co-occurrence Matrix (GLCM), image morphological feature, and Gaussian filter [87,33,86,34].…”
Section: Feature Extractionmentioning
confidence: 99%
“…Adapun beberapa penelitian yang menggunakan SVM sebagai pengklasifikasi adalah sebagai berikut. Sistem klasifikasi katarak serius dan non serius menggunakan metode analisis tekstur statistik dan SVM dengan akurasi 86,6% [5], sistem deteksi katarak untuk kondisi normal, katarak dan post cataract menggunakan metoda Edge pixel Count dan SVM dengan akurasi 88,39% [6], sistem deteksi katarak untuk kondisi katarak insipien dan katarak lanjut menggunakan metode Principal Component Analysis (PCA) dan SVM dengan akurasi 89% [7]. Adapun sistem deteksi katarak yang berbasis K-NN diantaranya adalah sistem klasifikasi kondisi mata normal dan katarak menggunakan metode analisis tekstur statistik dan K-NN dengan akurasi 94,5% [8].…”
Section: Pendahuluanunclassified
“…Principle Component Analysis (PCA) is applied on these features. Support Vector Machine algorithm (SVM) [15] is used for classification of fundus image. Their future work was intended to use other machine learning algorithms for better accuracy and efficiency.…”
Section: Related Workmentioning
confidence: 99%