Nitrogen and phosphorus-codoped graphene dots supported on nitrogen-doped three-dimensional graphene (N, P-GDs/N-3DG) have been synthesized by a facile freeze-annealing process. On the surface of the 3D interconnected porous structure, the N, P-GDs are uniformly dispersed. The as-prepared N, P-GDs/ N-3DG material served as a metal-free catalyst for oxygen reduction reaction (ORR) in an alkaline medium and evaluated by a rotating ring-disk electrode. The N, P-GDs/N-3DG catalyst exhibits excellent ORR activity, which is comparable to that of the commercial Pt/C catalyst. Furthermore, it exhibits a higher tolerance to methanol and better stability than the Pt/C. This enhanced electrochemical catalytic performance can be ascribed to the presence of abundant functional groups and edge defects. This study indicates that P−N bonded structures play a vital role as the active sites in ORR.