Positron emission tomography (PET) is an essential molecular imaging technique providing insights into pathways and using specific targeted radioligands for in vivo investigations. Within this protocol, a robust and reliable remote-controlled radiosynthesis of [ 11 C]SNAP-7941, an antagonist to the melanin-concentrating hormone receptor 1, is described. The radiosynthesis starts with cyclotron produced [ 11 C]CO 2 that is subsequently further reacted via a gas-phase transition to [ 11 C]CH 3 OTf. Then, this reactive intermediate is introduced to the precursor solution and forms the respective radiotracer. Chemical as well as the radiochemical purity are determined by means of RP-HPLC, routinely implemented in the radiopharmaceutical quality control process. Additionally, the molar activity is calculated as it is a necessity for the following real-time kinetic investigations. Furthermore, [ 11 C]SNAP-7941 is applied to MDCKII-WT and MDCKII-hMDR1 cells for evaluating the impact of P-glycoprotein (P-gp) expression on cell accumulation. For this reason, the P-gp expressing cell line (MDCKII-hMDR1) is either used without or with blocking prior to experiments by means of the P-gp substrate (±)-verapamil and the results are compared to the ones observed for the wildtype cells. The overall experimental approach demonstrates the importance of a precise time-management that is essential for every preclinical and clinical study using PET tracers radiolabelled with short-lived nuclides, such as carbon-11 (half-life: 20 min). Video Link The video component of this article can be found at https://www.jove.com/video/59557/ 11 C]SNAP-7941. µPET imaging in rats demonstrated low brain accumulation, which increased dramatically after administration of the P-gp inhibitor tariquidar 11. These data suggested that [ 11 C]SNAP-7941 is a substrate of this efflux transporter system impeding ligand binding to central MCHR1. Unfortunately, there is still a lack of adequate in vitro models enabling the prediction of BBB penetration in an early stage of tracer development.