First-generation epidermal growth factor receptor (EGFR) inhibitors, gefitinib and erlotinib, have achieved initially marked clinical efficacy for nonsmall cell lung cancer (NSCLC) patients with EGFR activating mutations. However, their clinical benefit was limited by the emergence of acquired resistance mutations. In most cases (approximately 60%), the resistance was caused by the secondary EGFR T790M gatekeeper mutation. Thus, it is still desirable to develop novel third-generation EGFR inhibitors to overcome T790M mutation while sparing wild-type (WT) EGFR. Herein, a series of pyrimido[4,5- d]pyrimidine-2,4(1 H,3 H)-dione derivatives were designed and synthesized, among which the most potent compound 20g not only demonstrated significant inhibitory activity and selectivity for EGFR and H1975 cells in vitro but also displayed outstanding antitumor efficiency in H1975 xenograft mouse model. The encouraging mutant-selective results at both in vitro and in vivo levels suggested that 20g might be used as a promising lead compound for further structural optimization as potent and selective EGFR inhibitors.