The objectives of this study were to select effective enzymes that catalyze the hydrolysis of allergenic proteins, gliadins, in wheat flour and to optimize the enzymatic treatment conditions. Six proteases were tested. Hydrolyzed samples were tested for residual gliadin concentrations and in vitro allergenicity. The hydrolysis conditions of wheat protein by the effective enzymes were optimized by central composite design. Results showed that alcalase from Bacillus licheniformis, and papain from latex of papaya fruit had greater ability to reduce gliadin content of wheat flour than flavourzyme, pepsin, trypsin or α-chymotrypsin. The sequential-treatment of wheat flour by alcalase-papain was more effective in reducing gliadin content than single enzyme treatment. Under the optimal conditions of sequential enzymatic treatment, gliadin was almost completely removed, resulting in the flour extract showing lowest IgE-binding. Therefore, this could be a promising biotechnology for preparing low allergenic wheat products.