2016
DOI: 10.1016/j.bpj.2016.08.012
|View full text |Cite
|
Sign up to set email alerts
|

New Biological Frontiers Illuminated by Molecular Sensors and Actuators

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2018
2018
2018
2018

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 11 publications
0
1
0
Order By: Relevance
“…The resolution of these controversies will require continuing development of technologies to more directly study the lipid-protein milieu, such as super-resolution microscopy coupled with fluorescence and bioluminescence techniques [37] harnessed to protein-conjugated quantum dots, which enables nanoscale and microscale quantitation and visualization of receptor clustering in living cells [38]. Sophisticated techniques also include stimulated emission depletion (STED) super-resolution nanoscopy [39], Förster resonance energy transfer (FRET) [40,41], fluorescence correlation spectroscopy (FCS) [39], k-space image correlation spectroscopy (kICS) [42], and magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) [43,44], each of which can provide valuable information on the nanometer scale.…”
Section: Introductionmentioning
confidence: 99%
“…The resolution of these controversies will require continuing development of technologies to more directly study the lipid-protein milieu, such as super-resolution microscopy coupled with fluorescence and bioluminescence techniques [37] harnessed to protein-conjugated quantum dots, which enables nanoscale and microscale quantitation and visualization of receptor clustering in living cells [38]. Sophisticated techniques also include stimulated emission depletion (STED) super-resolution nanoscopy [39], Förster resonance energy transfer (FRET) [40,41], fluorescence correlation spectroscopy (FCS) [39], k-space image correlation spectroscopy (kICS) [42], and magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) [43,44], each of which can provide valuable information on the nanometer scale.…”
Section: Introductionmentioning
confidence: 99%