Copula models are increasingly recognized for their ability to capture complex dependencies among random variables. In this study, we introduce three innovative bivariate models utilizing copula functions: the XLindley (XL) distribution with Frank, Gumbel, and Clayton copulas. The results highlight the fundamental characteristics and effectiveness of these newly introduced bivariate models. Statistical inference for the distribution parameters is conducted using a Type II censored sampling design. This employs maximum likelihood and Bayesian estimation techniques. Asymptotic and credible confidence intervals are calculated, and numerical analysis is performed using the Markov Chain Monte Carlo method. The proposed methodology’s applicability is illustrated by analyzing several real-world datasets. The initial dataset examines burr formation occurrences and consists of two observation sets. Additionally, the second and third datasets contain medical information. The second dataset focuses on diabetic nephropathy, while the third dataset explores infection and recurrence time among kidney patients.