BackgroundDementia with Lewy bodies (DLB) and Parkinson’s disease dementia (PDD), which share many clinical, neurochemical, and morphological features, have been incorporated into DSM-5 as two separate entities of major neurocognitive disorders with Lewy bodies. Despite clinical overlap, their diagnosis is based on an arbitrary distinction concerning the time of onset of motor and cognitive symptoms, namely as early cognitive impairment in DLB and later onset following that of motor symptoms in PDD. Their morphological hallmarks – cortical and subcortical α-synuclein/Lewy body plus β-amyloid and tau pathologies – are similar, but clinical differences at onset suggest some dissimilar profiles. Based on recent publications, including the fourth consensus report of the DLB Consortium, a critical overview is provided herein.DiscussionThe clinical constellations of DLB and PDD include cognitive impairment, parkinsonism, visual hallucinations, and fluctuating attention. Intravitam PET and postmortem studies have revealed a more pronounced cortical atrophy, elevated cortical and limbic Lewy body pathologies, higher Aβ and tau loads in cortex and striatum in DLB compared to PDD, and earlier cognitive defects in DLB. Conversely, multitracer PET studies have shown no differences in cortical and striatal cholinergic and dopaminergic deficits. Clinical management of both DLB and PDD includes cholinesterase inhibitors and other pharmacologic and non-drug strategies, yet with only mild symptomatic effects. Currently, no disease-modifying therapies are available.ConclusionDLB and PDD are important dementia syndromes that overlap in many clinical features, genetics, neuropathology, and management. They are currently considered as subtypes of an α-synuclein-associated disease spectrum (Lewy body diseases), from incidental Lewy body disease and non-demented Parkinson’s disease to PDD, DLB, and DLB with Alzheimer’s disease at the most severe end. Cognitive impairment in these disorders is induced not only by α-synuclein-related neurodegeneration but by multiple regional pathological scores. Both DLB and PDD show heterogeneous pathology and neurochemistry, suggesting that they share important common underlying molecular pathogenesis with Alzheimer’s disease and other proteinopathies. While we prefer to view DLB and PDD as extremes on a continuum, there remains a pressing need to more clearly differentiate these syndromes and to understand the synucleinopathy processes leading to either one.