Single glycan-protein interactions are often weak, such that glycan binding partnerscommonly utilizemultiple, spatially defined binding sites to enhance binding avidity and specificity.C urrent array technologiesu sually neglect defined multivalent display.L aser-based array synthesis technology allows for flexible and rapid on-surface synthesis of different peptides. By combining this technique with click chemistry,n eo-glycopeptides werep roduced directly on a functionalized glass slide in the microarray format. Density and spatial distribution of carbohydrates can be tuned, resulting in well-defined glycan structures for multivalent display.T he two lectins concanavalin Aa nd langerin were probedw ith different glycanso nm ultivalent scaffolds, revealing strong spacing-, density-, and ligand-dependent binding. In addition, we could also measuret he surfaced issociation constant.T his approach allows for ar apid generation, screening, and optimization of am ultitudeo fm ultivalent scaffoldsfor glycan binding.