Solar energy is used for a wide range of applications such as electricity production, desalination, cooling, heating, etc. Solar-based technologies are widely spread and increasingly studied in the industry. This theoretical and experimental study focuses on solar ponds as a desiccant and low-grade energy source. A thermal model has been developed for a salinity gradient solar pond (SGSP) with a non-convective zone split into 10 sub-zones. A solar pond was constructed and used as a case study for the validation of the predictive model capabilities. The dimensional characteristics of the pond, as well as the solar radiation intensity and ambient temperature data obtained from the meteorological data, were used to produce the solar pond's zone thermal behaviour data. With regards to the thermal behaviour measurements obtained from the solar pond, the predicted data were found to be higher. There is a significant difference between the real-world and meteorological data obtained, the difference between the predicted and real-world pond temperature data was also attributed to the fact that the actual absorbed solar radiation was reduced due to wall shading effect, turbidity and insufficient duration of operation of the pond. In the following year, the stored heat from the previous summer would be expected to improve thermal storage values obtained partially.