Renewable energy sources are integrated into a grid via inverters. Due to the absence of an inherent droop in an inverter, an artificial droop and inertia control is designed to let the grid-connected inverters mimic the operation of synchronous generators and such inverters are called virtual synchronous generators (VSG). Sudden addition, removal of load or faults in the grid causes power and frequency oscillations in the grid. The steady state droop control of VSG is not effective in dampening such oscillations. Therefore, a new control scheme, namely bouncy control, has been introduced. This control uses a variable emergency gain, to enhance or reduce the power contribution of individual VSGs during a disturbance. The maximum power contribution of an individual VSG is limited by its power rating. It has been observed that this control, successfully minimized the oscillation of electric parameters and the power system approached steady state quickly. Therefore, by implementing bouncy control, VSGs can work in coordination to make the grid more robust. The proposed controller is verified through Lyapunov stability analysis.