2021
DOI: 10.3390/jrfm14050215
|View full text |Cite
|
Sign up to set email alerts
|

New Dataset for Forecasting Realized Volatility: Is the Tokyo Stock Exchange Co-Location Dataset Helpful for Expansion of the Heterogeneous Autoregressive Model in the Japanese Stock Market?

Abstract: This study analyzes the importance of the Tokyo Stock Exchange Co-Location dataset (TSE Co-Location dataset) to forecast the realized volatility (RV) of Tokyo stock price index futures. The heterogeneous autoregressive (HAR) model is a popular linear regression model used to forecast RV. This study expands the HAR model using the TSE Co-Location dataset, stock full-board dataset and market volume dataset based on the random forest method, which is a popular machine learning algorithm and a nonlinear model. The… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 41 publications
0
0
0
Order By: Relevance