In order to solve the current fluctuation problem in microgrids, a suppression method called the Direct-driven Permanent Magnet Synchronous Generator (DPMSG)-based Wind Power System (WPS) based on an adaptive enhanced moving average filter algorithm is proposed. Firstly, the mathematical model of the WPS is established. On this basis, the suppression method under unbalanced conditions is derived by the instantaneous power equation to ensure the stable operation of the microgrid. In order to improve the dynamic compensation capability of the DPMSG-based WPS, an enhanced moving average filtering algorithm with frequency adaptability is proposed. The positive and negative sequence components are obtained in the dq frame by this filtering algorithm. Subsequently, the angular frequency of the microgrid is obtained according to the changing phase, which realizes the high-performance control of the WPS and avoids the complicated parameter adjustment of traditional methods. The correctness of this method is verified by the simulation results. The DPMSG-based WPS with the proposed method can improve the stability of the microgrid.