Purpose
The purpose of this paper is to introduce the concept of stationary inlet zone bump (IZB) for film thickness enhancement in unidirectional pure sliding elastohydrodynamic lubrication (EHL) line contacts and to investigate the effects of maximum Hertzian pressure (load) and piezo-viscous response on the effectiveness of IZB.
Design/methodology/approach
The numerical analysis involves the solution of Reynolds and elasticity equations. The well-established Doolittle–Tait equations are used herein to determine the lubricant viscosity and density as functions of local pressure, while the Carreau model is used to describe the lubricant rheology. The IZB is assumed to have a sinusoidal profile and it is present on the stationary surface. The governing equations are discretized using finite difference scheme and solved using the Newton–Raphson technique.
Findings
Two test oils, L7808 and SR600, with linear and exponential piezo-viscous responses in the inlet zone are considered here for comparison. The effectiveness of IZB in terms of film thickness enhancement is found to be more for SR600. Besides, IZB is found to be more effective at lower values of maximum Hertzian pressure. The bump needs to shift downstream at higher load to be as effective as at lower load.
Originality/value
This is the first paper to simulate EHL characteristics in the presence of a stationary IZB and to study the effect of various parameters on EHL effectiveness. The film thickness enhancement obtained here is remarkable and hence it is a novel and valuable contribution.