For the defocusing Nonlinear Schrödinger equation on the circle, we construct a Birkhoff map Φ which is tame majorant analytic in a neighborhood of the origin. Roughly speaking, majorant analytic means that replacing the coefficients of the Taylor expansion of Φ by their absolute values gives rise to a series (the majorant map) which is uniformly and absolutely convergent, at least in a small neighborhood. Tame majorant analytic means that the majorant map of Φ fulfills tame estimates. The proof is based on a new tame version of the Kuksin-Perelman theorem [KP10], which is an infinite dimensional Vey type theorem.