X-ray diffraction and molecular dynamics simulations were used to probe the structures of two families of ionic liquids containing oligoether tails on the cations. Imidazolium and pyrrolidinium bis(trifluoromethylsulfonyl)amide ILs with side chains ranging from 4 to 10 atoms in length, including both linear alkyl and oligo-ethylene oxide tails, were prepared. Their physical properties, such as viscosity, conductivity and thermal profile, were measured and compared for systematic trends. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidinium ILs increases there is hardly any increase in the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. To complement the experimentally determined properties, molecular dynamics simulations were run on the two ILs with the longest ether chains. The results point to specific aspects that could be useful for researchers designing ILs for specific applications. The focus of the ionic liquid (IL) community is shifting beyond the mere measurement of physical properties and identification of trends arising from particular structural moieties. Researchers are delving deeper into the nanostructural interactions between the ions to determine the topographical landscape of the ions within the liquids that influence IL properties.1-3 Such information is valuable when tuning the properties of ILs for particular applications. The ability to tune the properties of ionic liquids for specific applications is a major factor in their allure as remarkable solvents that make it possible to do extreme chemistry without extreme conditions. It has been acknowledged that although ionic liquids have a combination of physical properties that make them attractive alternatives to traditional solvents, they have relatively high viscosities that hamper their practical application in large-scale processes. For example, in the area of electrochemical energy storage devices there is still an urgent need for improved electrolytes exhibiting properties of combustion resistance, high conductivity, and wide electrochemical windows. ILs with improved transport properties (viscosity, conductivity and diffusivity) would be perfect candidates to address this need. Structural modification of the IL cation and anion is a proven tool to dramatically alter IL properties. In particular, substituting ether functionalities for alkyl functionalities on IL cations has been shown to reduce the viscosity of ionic liquids significantly.2,4-6 In this work we examine the effect of incorporating oligoether side chains of varying lengths (1-3 repeating ethoxy units, Figure 1) on the physical properties and structural characteristics of imidazolium and pyrrolidinium NTf 2 ionic liquids in ...