Reactive power is related to the type of power that does not consume energy but stores it. In the design of test machines, the utilization of this physical phenomenon would be very beneficial. Reactive power allows for the combination of power amplification with energy savings, making it an ideal principle for conducting long-term tests that involve high loads and prolonged energy consumption. This work focuses on testing machines operating in resonance, which allows for higher test frequencies and reduced test durations. Various types of fatigue testing machines, including those with rotating-unbalance actuators, servo-hydraulic actuators, and piezoelectric actuators, are examined through vibration analysis, methodical design, and mechatronics. Resonant testing machines provide significant advantages in energy efficiency and test accuracy for a wide range of applications in materials testing. These methods are crucial for future applications in industries where energy efficiency and precise fatigue testing are critical, such as aerospace, automotive, and civil engineering.