The fossil record of modern amphibians (frogs, salamanders, and caecilians) provides no evidence for major extinction or radiation episodes throughout most of the Mesozoic and early Tertiary. However, long-term gradual diversification is difficult to reconcile with the sensitivity of present-day amphibian faunas to rapid ecological changes and the incidence of similar environmental perturbations in the past that have been associated with high turnover rates in other land vertebrates. To provide a comprehensive overview of the history of amphibian diversification, we constructed a phylogenetic timetree based on a multigene data set of 3.75 kb for 171 species. Our analyses reveal several episodes of accelerated amphibian diversification, which do not fit models of gradual lineage accumulation. Global turning points in the phylogenetic and ecological diversification occurred after the endPermian mass extinction and in the late Cretaceous. Fluctuations in amphibian diversification show strong temporal correlation with turnover rates in amniotes and the rise of angiosperm-dominated forests. Approximately 86% of modern frog species and >81% of salamander species descended from only five ancestral lineages that produced major radiations in the late Cretaceous and early Tertiary. This proportionally late accumulation of extant lineage diversity contrasts with the long evolutionary history of amphibians but is in line with the Tertiary increase in fossil abundance toward the present. amphibian evolution ͉ macroevolutionary patterns ͉ molecular timetree ͉ paleobiology ͉ phylogenetics P resent-day terrestrial ecosystems harbor Ͼ6,000 amphibian species worldwide (1), a diversity that parallels those of placental mammals and songbirds (2). Yet, the current rate at which amphibian faunas are declining exceeds that of any other vertebrate group and has been attributed to a combination of rapidly changing ecological and climatic conditions (habitat loss, invading pathogens, global warming, increased UV-radiation) (3). This raises questions of how the ancestors of modern amphibians coped with preceding environmental crises during their evolutionary history. The tetrapod fossil record identifies at least one major extinction episode that involved widespread amphibian declines: At the end-Permian [Ϸ251 million years ago (Mya)], a diversity of 24 amphibian-like families (including reptiliomorphs and acanthrosaurs, which may be more related to modern amniotes) was reduced to 8 over a single geological stage boundary (4). The end-Permian mass extinction, estimated to be the most profound loss of vertebrate life on record (4-7), has been associated with a massive release of carbon gases in the atmosphere, causing a global greenhouse effect and abrupt climate warming (6, 7). Similar environmental perturbations have been postulated for subsequent periods and have been associated with fossil evidence for extinctions and subsequent radiations in several amniote groups (8-10). However, there is no correlated pattern for amphibian fossils.T...