Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants.Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50-75% higher than results from state-ofthe-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.crop productivity | carbon fluxes | Earth observation | carbon modeling | spaceborne spectroscopy T he rapidly growing demand for food and biofuels constitutes one of the greatest challenges for humanity in coming decades (1). It is estimated that we must double world food production by 2050 to meet increasing demand (2), but the once rapid growth seen in the "green revolution" has stalled, and even past advances are threatened by climate change (3-5). Much of past yield improvement has focused on increases in the harvest index and resistance to pests. However, all else being equal, the quantity of photosynthesis places an upper limit on the supply of food and fuels from our agricultural systems.Ironically, we currently have very limited ability to assess photosynthesis of the breadbaskets of the world. Agricultural production inventories provide important information about crop productivity and yields (6-8), but these are difficult to compare between regions and lag actual production. Carbon cycle models, based on either process-oriented biogeochemistry or semiempirical data-driven approaches, have been used to understand the controls and variations of global gross primary production (GPP, equivalent to ecosystem gross photosynthesis) (9) and to investigate the climate impact on crop yields (10). However, uncertainty associated with inaccurate input data and much simplified process descriptions based on the plant functional type concept severely challenge the applicat...