2022
DOI: 10.48550/arxiv.2205.13787
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

New graph-based multi-sample tests for high-dimensional and non-Euclidean data

Abstract: Testing the equality in distributions of multiple samples is a common task in many fields. However, this problem for high-dimensional or non-Euclidean data has not been well explored. In this paper, we propose new nonparametric tests based on a similarity graph constructed on the pooled observations from multiple samples, and make use of both within-sample edges and between-sample edges, a straightforward but yet not explored idea. The new tests exhibit substantial power improvements over existing tests for a … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 17 publications
0
0
0
Order By: Relevance