Ketamine, an antagonist of the N-methyl-D-aspartate (NMDA)-type glutamate receptors, is a pediatric anesthetic. Ketamine has been shown to be neurotoxic and cardiotoxic in mammals. Here, we show that after 2 h of exposure, 5 mM ketamine significantly reduced heart rate in 26 h old zebrafish embryos. In 52 h old embryos, 1 mM ketamine was effective after 2 h and 0.5 mM ketamine at 20 h of exposure. Ketamine also induced significant reductions in activated MAPK (ERK) levels. Treatment of the embryos with the ERK inhibitor, PD 98059, also significantly reduced heart rate whereas the p38/SAPK inhibitor, SB203580, was ineffective. Ketamine is known to inhibit lipolysis and a decrease of ATP content in the heart. Co-treatment with Lcarnitine that enhances fatty acid metabolism effectively rescued ketamine-induced attenuated heart rate and ERK activity. These findings demonstrate that L-carnitine counteracts ketamine's negative effects on heart rate and ERK activity in zebrafish embryos.