We isolated a human cDNA by expression cloning and characterized its gene product as a new human protein that enables entry and infection of herpes simplex virus (HSV). The gene, designated hfl-B5, encodes a type II cell surface membrane protein, B5, that is broadly expressed in human primary tissue and cell lines. It contains a high-scoring heptad repeat at the extracellular C terminus that is predicted to form an ␣-helix for coiled coils like those in cellular SNAREs or in some viral fusion proteins. A synthetic 30-mer peptide that has the same sequence as the heptad repeat ␣-helix blocks HSV infection of B5-expressing porcine cells and human HEp-2 cells. Transient expression of human B5 in HEp-2 cells results in increased polykarocyte formation even in the absence of viral proteins. The B5 protein fulfills all criteria as a receptor or coreceptor for HSV entry. Use by HSV of a human cellular receptor, such as B5, that contains putative membrane fusion domains provides an example where a pathogenic virus with broad tropism has usurped a widely expressed cellular protein to function in infection at events that lead to membrane fusion.Herpes simplex virus type 1 (HSV-1) and HSV-2 are prevalent human pathogens that infect a broad range of animal cells. They establish lifelong latency in human neurons from which reactivation to lytic replication leads to recurrent herpes lesions. Entry into cells involves attachments of viral glycoproteins to multiple alternative cellular receptors (2,10,30). However, the molecular mechanisms of entry have not yet been defined.The human proteins identified as receptors for HSV include heparan sulfate (HS) proteoglycans and several integral membrane proteins that are members of well-characterized families (30). Herpesvirus entry mediator HVEM (HveA) is a member of the tumor necrosis factor receptor family (20). Nectin 2 (HveB) and nectin 1 (HveC) or herpes immunoglobulin-like receptor are adhesion molecules in the immunoglobulin superfamily (7,12,35). D-Glucosaminyl 3-O-sulfotransferase (3-OS) modifies specific sites in cellular HS to generate binding sites for the essential HSV attachment glycoprotein D (gD) (27). Nectin 1, which was originally isolated as poliovirus receptorrelated protein, allows entry of most HSV-1 and HSV-2 strains and is broadly expressed on a range of human tissues. HVEM and nectin 2 are more limited by either tissue distribution or strain specificity for transfer of HSV susceptibility. HVEM does not support entry of mutant virus HSV-1(Rid-1) that has a point mutation in gD (20). Nectin 2 is reported to allow entry of HSV-2 strains and HSV-1(Rid-1), but not most HSV-1 strains (35). Isolation of animal homologs for nectin 1 and HVEM raises the possibility that they may engage HSV during infection of animal cells.With the exception of HS, HSV gD is a viral ligand for these receptors. Some regions of gD involved in receptor interactions have been defined (3,8). How the cellular proteins interact with other viral proteins (each other or other cellular proteins) ...