Bioaccumulation potential is critical in PBT and risk assessment of chemicals. However, for ionic liquids (ILs), this aspect remains neglected. It is especially important to fill this gap, because for this group of compounds, existing data confirm their risk of being environmentally persistent and toxicity. Moreover, considering preliminary reports on the interactions of ILs with lipids, it may be assumed that ILs have a higher potential for bioaccumulation than indicated by previous estimations built upon octanol–water partition coefficients. Moreover, the bioconcentration of ionizable chemical compounds may also be strongly related to plasma protein contents. Therefore, in this work, the affinity of a set of imidazolium cations and organic anions, and their combination to human serum albumin (HSA) was determined. The obtained results reveal that both cations and anions can be strongly bound to HSA, and blood proteins might play an important role in overall bioaccumulation. Furthermore, it was observed that HSA binding properties towards IL cations depend on the hydrophobicity of cations. The obtained data also provide indication that cation–anion interaction may affect ILs ions affinity to HSA.