Saccadic adaptation is an oculomotor learning process that maintains the accuracy of eye movements to ensure effective perception of the environment. Although saccadic adaptation is commonly considered an automatic and low-level motor calibration in the cerebellum, we recently found that strength of adaptation is influenced by the visual content of the target: pictures of humans produced stronger adaptation than noise stimuli. This suggests that meaningful images may be considered rewarding or valuable in oculomotor learning. Here we report three experiments that establish the boundaries of this effect. In the first, we tested whether stimuli that were associated with high and low value following long term self-administered reinforcement learning produce stronger adaptation. Twenty-eight expert gamers participated in two sessions of adaptation to game-related high- and low-reward stimuli, but revealed no difference in saccadic adaptation (Bayes Factor01 = 5.49). In the second experiment, we tested whether cognitive (literate) meaning could induce stronger adaptation by comparing targets consisting of words and nonwords. The results of twenty subjects revealed no difference in adaptation strength (Bayes Factor01 = 3.21). The third experiment compared images of human figures to noise patterns for reactive saccades. Twenty-two subjects adapted significantly more toward images of human figures in comparison to noise (p < 0.001). We conclude that only primary (human vs. noise), but not secondary, reinforcement affects saccadic adaptation (words vs. nonwords, high- vs. low-value video game images).