Abstract. We translate the concept of restriction of an arrangement in terms of Hopf algebras. In consequence, every Nichols algebra gives rise to a simplicial complex decorated by Nichols algebras with restricted root systems. As applications, some of these Nichols algebras provide Weyl groupoids which do not arise for diagonal Nichols algebras and in fact we realize all root systems of finite Weyl groupoids of rank greater than three. Further, our result explains the root systems of the folded Nichols algebras over nonabelian groups and of generalized Satake diagrams.