Ligand scaffolding: The chemist's ability to choose from a wide range of supporting ligands is an important factor in designing new metal complexes. The introduction of new ligand scaffolds with different donor types and coordination numbers allows for the expansion of reaction chemistry at metal centers. This article surveys the use of the tetradentate monoanionic (TMDA) ligands (shown here) with main-group, transition-metal, and f-block elements. Supporting ligand design has played a vital role in the development of coordination and organometallic chemistry. A myriad of ligands with varying charge, donor-type, and denticity have been explored in this realm. A ligand type that has garnered recent attention involves a tetradentate monoanionic (TDMA) framework. TDMA ligands have been used with p-, d-, and f-block elements to form an array of interesting new complexes with applications ranging from bioinorganic chemistry to catalysis. Complexes incorporating TDMA ligands have been shown to stabilize reactive low-valent and cationic species. Functionalized beta-diiminato and TACN derivatives as well as tripodal ligands featuring both hard sigma-donors as well as "mixed-donors" are covered in this review. The synthetic challenges associated with the implementation of each ligand set are discussed.