<p style='text-indent:20px;'>Recently, the construction of new MDS Euclidean self-dual codes has been widely investigated. In this paper, for square <inline-formula><tex-math id="M1">\begin{document}$ q $\end{document}</tex-math></inline-formula>, we utilize generalized Reed-Solomon (GRS) codes and their extended codes to provide four generic families of <inline-formula><tex-math id="M2">\begin{document}$ q $\end{document}</tex-math></inline-formula>-ary MDS Euclidean self-dual codes of lengths in the form <inline-formula><tex-math id="M3">\begin{document}$ s\frac{q-1}{a}+t\frac{q-1}{b} $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M4">\begin{document}$ s $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ t $\end{document}</tex-math></inline-formula> range in some interval and <inline-formula><tex-math id="M6">\begin{document}$ a, b \,|\, (q -1) $\end{document}</tex-math></inline-formula>. In particular, for large square <inline-formula><tex-math id="M7">\begin{document}$ q $\end{document}</tex-math></inline-formula>, our constructions take up a proportion of generally more than 34% in all the possible lengths of <inline-formula><tex-math id="M8">\begin{document}$ q $\end{document}</tex-math></inline-formula>-ary MDS Euclidean self-dual codes, which is larger than the previous results. Moreover, two new families of MDS Euclidean self-orthogonal codes and two new families of MDS Euclidean almost self-dual codes are given similarly.</p>