Cyanobacterial bloom was observed in a highly eutrophic dam reservoir, Zemborzycki, near Lublin (SE Poland) over a warm period in the year 2007. The water bloom consisted of several cyanobacterial taxa: Anabaena circinalis, Anabaena spiroides, Anabaena flos-aquae, Planktothrix agardhii, Aphanizomenon flos-aquae, Aphanizomenon gracile, and Microcystis flos-aquae. Anabaena spp., and Aphanizomenon spp., potential producers of neurotoxic anatoxin-a, quantitatively predominated in the studied bloom. High-performance liquid chromatography (HPLC) analysis of surface scum sampled during Anabaena circinalis domination revealed the presence of anatoxin-a at a high concentration (1,035.59 microg per liter of surface scum). At the same time, neither gas chromatography/mass spectrometry (GC/MS) nor microcystin enzyme-linked immunosorbent assay (ELISA) test showed the presence of other frequently found cyanotoxins, microcystins. Toxicity of cyanobacterial bloom was assessed by the crustacean acute toxicity test Daphtoxkit F pulex using Daphnia pulex, and by the chronic toxicity test Protoxkit F with a ciliate protozoan Tetrahymena thermophila. The crude extract of cyanobacterial scum showed high toxicity for Daphnia pulex, with 24-h median effective concentration (EC50) value of 90.3 microg/L of anatoxin-a, which corresponded to the cyanobacterial density in the scum of 1.01 g dry weight/L. For Tetrahymena thermophila, 24-h EC50 was lower, evaluated to be 60.48 microg/L of anatoxin-a, which corresponded to a cyanobacterial density of 0.68 g dry weight/L of the scum. On the basis of evaluated toxicity units, the cyanobacterial extract was classified at class IV toxicity, which means high toxic hazard.