2022
DOI: 10.11591/ijeecs.v28.i1.pp339-345
|View full text |Cite
|
Sign up to set email alerts
|

New memoryless self-scaling quasi Newton strategy on large scale unconstrained optimization problems

Abstract: In unconstrained optimization algorithms, we employ the memoryless quasi Newton procedure to construct a new conjugacy coefficient for the conjugate gradient approaches. This newer updating formula was adapted by scaling the well-known broyden fletcher glodfarb shanno (BFGS) formula by a selfscaling factor in order to reach to the new form of the conjugacy coefficient which makes a satisfactory result in the descent direction and satisfies the globally convergent features when compared the proposed method to H… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?