Drilling deviated wells has become customary in recent times. This work condenses various highly deviated and horizontal well log interpretation techniques supported by field examples. Compared to that in vertical wells, log interpretation in highly deviated wells is complex because the readings are affected not only by the host bed but also the adjacent beds and additional wellbore-related issues. However, understanding the potential pitfalls and combining information from multiple logs can address some of the challenges. For example, a non-azimuthally focused gamma ray logging while drilling (LWD) tool, used in combination with azimuthally focused density and neutron porosity tools, can accurately tell if an adjacent approaching bed is overlying or underlying. Moreover, resistivity logs in horizontal wells are effective in detecting the presence of adjacent beds. Although the horns associated with resistivity measurements in highly deviated wells are unwanted, their sizes can provide important clues about the angle of the borehole with respect to the intersecting beds. Inversion of horizontal/deviated well logs can also help determine true formation resistivities. Additionally, observed disagreement between resistivity readings with nuclear magnetic resonance (NMR) T2 hydrocarbon peaks can indicate the presence or absence of hydrocarbons. Furthermore, variations in pulsed neutron capture cross sections along horizontal wells, measured while injecting various fluids, can indicate high porosity/permeability unperforated productive zones. Finally, great advances have been made in the direction of the bed geometry determination and geologic modeling using the mentioned deviated well logs. More attention is required toward quantitative log interpretation in horizontal/high angle wells for determining the amount of hydrocarbons in place.