2014
DOI: 10.1002/xrs.2546
|View full text |Cite
|
Sign up to set email alerts
|

New method to determine effective atomic number of samples via external bremsstrahlung

Abstract: In the present investigation, the variation in the external bremsstrahlung (EB) intensity produced due to the beta particles emitted by the 90 Sr-90 Y source in the elements Al, Cu, Ag, Sn, and Pb as well as some lead compounds was studied as a function of their masses per unit area. By a suitable regression analysis, two new, handy, and simple expressions for the effective atomic number of the radiator were derived in terms of the measured EB intensity. The novelty of the present method is that these expressi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
7
0

Year Published

2015
2015
2023
2023

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(7 citation statements)
references
References 17 publications
(22 reference statements)
0
7
0
Order By: Relevance
“…Over the entire b-spectral range of the radioactive source used. Here typically, n¼2, K is a constant to be determined and S=r is the mass attenuation coefficient defined for the E av b which in the present case is around 908keV (Manjunatha et al, 2014) and rt is the mass per unit area and N ¼ N 0 rt=A is the number of atoms per unit area. N 0 is the Avogadro number and A is the atomic/molecular weight.…”
Section: Resultsmentioning
confidence: 99%
See 4 more Smart Citations
“…Over the entire b-spectral range of the radioactive source used. Here typically, n¼2, K is a constant to be determined and S=r is the mass attenuation coefficient defined for the E av b which in the present case is around 908keV (Manjunatha et al, 2014) and rt is the mass per unit area and N ¼ N 0 rt=A is the number of atoms per unit area. N 0 is the Avogadro number and A is the atomic/molecular weight.…”
Section: Resultsmentioning
confidence: 99%
“…A discussion on the linear variation of S=r with lnZ, is provided by Manjunatha et al (2014). By a proper linear regression analysis, best fit values of lnK, C and D were respectively found to be À44.275 ± 0.168, À0.356 ± 0.038 and 0.792 ± 0.011 after fixing n¼2.…”
Section: Resultsmentioning
confidence: 99%
See 3 more Smart Citations