Rainwater harvesting systems (RWHSs) have been accepted as a simple and effective approach to ease the worsening of urban water stress. However, in arid and semiarid regions, a comprehensive method for promoting domestic RWHSs in a large-scale water-saving scheme that incorporates water consumption reducing equipment (WCRE) and gray water reuse (GWR), has not been well developed. For this, based on the case study of Guilan Province, Iran, this study addressed the temporal-spatial complex of rainfall and proposed a GIS-simulation-based decision support system (DSS). Herein, two scenarios, i.e., the typical RWHS and the modified RWHS for arid areas, were tested; and the associated economic analysis was performed and compared with WCRE and GWR. Moreover, for larger-scale implementation, the multiple criteria decision making (MCDM) technique was further applied to address the social-environmental complexity of these water-saving methods. Guilan Province has thereby been classified into three priority levels, providing a straightforward understanding of how to promote the large-scale water-saving scheme. Compared with the traditional generalized method, sensitivity analysis verified that this DSS enhanced the information value. Hence, the DSS that provides more holistic and comprehensive support has been identified as a useful tool to ease the threat of urban water stress.