Protein coding genes constitute only approximately 1% of the human genome but harbor 85% of the mutations with large effects on disease-related traits. Therefore, efficient strategies for selectively sequencing complete coding regions (i.e., ''whole exome'') have the potential to contribute to the understanding of rare and common human diseases. Here we report a method for whole-exome sequencing coupling Roche/NimbleGen whole exome arrays to the Illumina DNA sequencing platform. We demonstrate the ability to capture approximately 95% of the targeted coding sequences with high sensitivity and specificity for detection of homozygous and heterozygous variants. We illustrate the utility of this approach by making an unanticipated genetic diagnosis of congenital chloride diarrhea in a patient referred with a suspected diagnosis of Bartter syndrome, a renal salt-wasting disease. The molecular diagnosis was based on the finding of a homozygous missense D652N mutation at a position in SLC26A3 (the known congenital chloride diarrhea locus) that is virtually completely conserved in orthologues and paralogues from invertebrates to humans, and clinical follow-up confirmed the diagnosis. To our knowledge, whole-exome (or genome) sequencing has not previously been used to make a genetic diagnosis. Five additional patients suspected to have Bartter syndrome but who did not have mutations in known genes for this disease had homozygous deleterious mutations in SLC26A3. These results demonstrate the clinical utility of whole-exome sequencing and have implications for disease gene discovery and clinical diagnosis.Bartter syndrome ͉ congenital chloride diarrhea ͉ next-generation sequencing ͉ whole-exome sequencing ͉ personal genomes G enetic variation plays a major role in both Mendelian and non-Mendelian diseases. Among the approximately 2,600 Mendelian diseases that have been solved, the overwhelming majority are caused by rare mutations that affect the function of individual proteins; at individual Mendelian loci, approximately 85% of the disease-causing mutations can typically be found in the coding region or in canonical splice sites (1). For complex traits, genome-wide association studies have identified more than 250 common variants associated with risk alleles that contribute to a wide range of diseases (2, 3). To date, most of these impart small effects on disease risk (e.g., odds ratio of 1.2); moreover, even when extremely large studies have been performed, the vast majority of the genetic contribution to disease risk remain unexplained (4-6). These findings suggest that individually rare variants with relatively large effect may account for a large fraction of this missing trait variance. Indeed, studies addressing this question have documented the presence of individually rare variants with relatively large effect (7,8). Consistent with the Mendelian model, coding variants have proven to be prevalent sources of such rare variants.These considerations motivate implementation of robust approaches to sequencing complete c...