This paper reports a comprehensive overview of nonconventional machining (NCM) of fiber-reinforced polymers (FRPs), which are widely used in high-tech industries owing to their superior mechanical properties compared with conventional metallic materials. To achieve FRP applications, hole processing for bolting and milling is required to match the dimensional precision. However, the large cutting force induced in conventional machining (CM), such as drilling and milling, causes severe failures, such as delamination and thermal damage to FRPs. To replace CM, various NCM technologies with efficient and powerful processing have been introduced to reduce FRP damage during machining. However, the complex nature of FRPs makes it difficult to identify the material removal mechanism and predict the machining quality and degradation of material properties. Not only the quantification of the machining parameter and performance but also an analysis to determine their relation is necessary. However, unlike many previous CM reviews, there are only a few reviews on NCM for FRPs. This paper addresses three types of representative NCMs: laser beam machining, rotary ultrasonic machining, and abrasive water jet machining. Each NCM is classified and systematically reviewed using a parametric study, mechanistic model, and numerical simulation. In addition, further studies on the NCM of FRPs are suggested.