Second harmonic generation (SHG) in nonlinear optical crystal is well-established technique for the measurement of the pulse-width of ultrafast femtosecond laser pulses. However, only selected nonlinear crystalline materials are suited for this purpose due to the limitations in transparency cut-off, limited phase-matching wavelength range, and large difference between the group velocities of the fundamental and harmonic waves. It is found that some newly discovered crystals, such as CsLiB 6 O 10 (CLBO), K 2 Al 2 B 2 O 7 (KABO), Li 2 B 4 O 7 (LB4), and KBe 2 BO 3 F (KBBF) have some advantageous characteristics for use in ultrafast nonlinear optical applications. Here we have presented several linear and nonlinear optical parameters including phase-matching angle, angular and spectral acceptance bandwidths, walk-off angle, nonlinear coupling coefficient, and group-velocity mismatch for generation of second harmonic of ultrafast laser radiations by employing type-I and type-II SHG techniques in these crystals.