Abstract:In a small-to-medium-scale wind energy conversion system (WECS), diode rectifiers rather than pulse-width modulated (PWM) rectifiers are widely adopted due to the features of high reliability and low cost. However, large current harmonics are induced in the generator phase current by commutations of diode rectifier, eventually causing large torque ripple on the drive-train of the WECS and making it more likely to be fatigue breakdown. In this paper, a 12-pulse autotransformer rectifier unit (ATRU) with reduced volume and weight is proposed for WECS application. By analyzing the characteristics of the input current and output voltage of the ATRU within the entire operation range of WECS, the method to properly design its parameters is proposed. A 1.2 kW direct-drive WECS demonstration platform using ATRU is built in the lab. A modified sensorless overall power control strategy is adopted to control the WECS. Experimental tests are carried out and the results not only validate the feasibility of implementing ATRU in WECS applications, but also prove its high torque ripple reduction ability.