2013 World Congress on Computer and Information Technology (WCCIT) 2013
DOI: 10.1109/wccit.2013.6618713
|View full text |Cite
|
Sign up to set email alerts
|

New parallel algorithms for finding determinants of N×N matrices

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2015
2015
2024
2024

Publication Types

Select...
4
1
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 5 publications
0
2
0
1
Order By: Relevance
“…In 2014, Almalki and his workmates designed parallel algorithms for Laplace expansion and LU decomposition. The algorithms are 129% and 44% respectively faster than the sequential algorithms [34].…”
Section: Computation By Special Meansmentioning
confidence: 94%
“…In 2014, Almalki and his workmates designed parallel algorithms for Laplace expansion and LU decomposition. The algorithms are 129% and 44% respectively faster than the sequential algorithms [34].…”
Section: Computation By Special Meansmentioning
confidence: 94%
“…Ese mismo año Yi-Gang Tai publicó sobre la aceleración de las operaciones matriciales con algoritmos pipeline y la reducción de vectores (Tai, 2012). En 2013, Sami Almaki presentó un nuevo algoritmo paralelo para la resolución de determinantes de orden nxn (Almalki, 2013). Por último, el año pasado fue publicado por Xinyu Lei, el artículo sobre el paradigma del cómputo en el servicio de la nube, enfocándose en el caso de calcular determinantes de grandes matrices (Lei, 2014).…”
Section: Trabajos Previosunclassified
“…Finding the inverse of a square matrix can be done using a variety of methods, including well-known methods such as Gauss Elimination, Gauss-Jordan, LU Decomposition, QR Decomposition and Cholesky Decomposition [10].…”
Section: Introductionmentioning
confidence: 99%