The redox interconversion
between Co(III) thiolate and Co(II) disulfide
compounds has been investigated experimentally and computationally.
Reactions of cobalt(II) salts with disulfide ligand L1SSL1 (L1SSL1 = di-2-(bis(2-pyridylmethyl)amino)-ethyl
disulfide) result in the formation of either the high-spin cobalt(II)
disulfide compound [CoII2(L1SSL1)Cl4] or a low-spin, octahedral cobalt(III) thiolate
compound, such as [CoIII(L1S)(MeCN)2](BF4)2. Addition of thiocyanate anions to
a solution containing the latter compound yielded crystals of [CoIII(L1S)(NCS)2]. The addition of chloride
ions to a solution of [CoIII(L1S)(MeCN)2](BF4)2 in acetonitrile results in conversion
of the cobalt(III) thiolate compound to the cobalt(II) disulfide compound
[CoII2(L1SSL1)Cl4], as monitored with UV–vis spectroscopy; subsequent addition
of AgBF4 regenerates the Co(III) compound. Computational
studies show that exchange by a chloride anion of the coordinated
acetonitrile molecule or thiocyanate anion in compounds [CoIII(L1S)(MeCN)2]2+ and [CoIII(L1S)(NCS)2] induces a change in the character
of the highest occupied molecular orbitals, showing a decrease of
the contribution of the p orbital on sulfur and an increase of the
d orbital on cobalt. As a comparison, the synthesis of iron compounds
was undertaken. X-ray crystallography revealed that structure of the
dinuclear iron(II) disulfide compound [FeII2(L1SSL1)Cl4] is different from that
of cobalt(II) compound [CoII2(L1SSL1)Cl4]. In contrast to cobalt, reaction of ligand
L1SSL1 with [Fe(MeCN)6](BF4)2 did not yield the expected Fe(III) thiolate compound.
This work is an unprecedented example of redox interconversion between
a high-spin Co(II) disulfide compound and a low-spin Co(III) thiolate
compound triggered by the nature of the anion.