In recent years the discrepancy in the value of the Hubble parameter has been growing. Recently, there are works supporting the proposal that the uncertainty principles can solve the Hubble tension. Motivated by this proposal, we work with an isotropic and homogeneous FRW universe, obtain its Hamiltonian equations, and thus, the Hubble parameter through the first Friedmann equation. In the context of GUP and EUP models, the Hubble parameter is modified. Since the fingerprints of quantum gravity are imprinted on the CMB, we consider the GUP/EUP-modified Hubble parameter in the first Friedmann equation to be the one measured by the Planck collaboration which uses the CMB data. The unmodified Hubble parameter in the first Friedmann equation is considered to be the one measured by the HST group which uses the SNeIa data. Therefore, upper bounds for the dimensionless parameters of GUP and EUP are obtained.