Chemical modification of poly(vinyl alcohol) (PVA) with different monomers is a convention method for the development of its properties. In this study, the new multifunctional membranes (PVA-A)1–3, (PVA-P)1–3, (PVA-AG) and (PVA-PG) were designed and synthesized by the reaction of PVA with heterocyclic compounds [N,Nʹ-bi-α-azido succinimide (A), N-phthalimido-α-azido succinimide (P)] and using glutaraldehyde (G) as cross-linker, respectively. The new membranes were characterized by FT-IR, TGA, SEM and X-ray diffraction. The swelling behavior of the membranes showed that membranes (PVA-P)1–3 exhibited the highest swelling capacity in different solvents. Their antibacterial against (Gram-negative), (Gram-positive) bacteria, and in vitro drug loading and release activities were evaluated. Additionally, metal ions adsorption capacity for copper, cobalt and mercury ions was studied. (PVA-AG) membrane performed the highest inhibitory effect to E. coli, Proteus, S. aureus and B. subtilis bacteria reached 22.9, 25.46, 24.9 and 30.56, respectively. Furthermore, in vitro controlled loading and release of lidocaine, (PVA-A)1 membrane revealed remarkable ability reached 57.37% and 94.59%, respectively. Hydrogel (PVA-AG) showed the highest metal ions (copper, cobalt and mercury) uptake efficiency (64.5, 69.5 and 73), respectively. Based on results, the prepared membranes can be suggested as promising agents for antibacterial, drug delivery systems and metal ions removal from aqueous medium.