N-acyl homoserine lactones (AHLs) are small diffusible signaling molecules that mediate a cell density-dependent bacterial communication system known as quorum sensing (QS). AHL-mediated QS regulates gene expression to control many critical bacterial behaviors including biofilm formation, pathogenicity, and antimicrobial resistance. Dental plaque is a complex multispecies oral biofilm formed by successive colonization of the tooth surface by groups of commensal, symbiotic, and pathogenic bacteria, which can contribute to tooth decay and periodontal diseases. While the existence and roles of AHL-mediated QS in oral microbiota have been debated, recent evidence indicates that AHLs play significant roles in oral biofilm development and community dysbiosis. The underlying mechanisms, however, remain poorly characterized. To better understand the importance of AHL signaling in dental plaque formation, we manipulated AHL signaling by adding AHL lactonases or exogenous AHL signaling molecules. We find that AHLs can be detected in dental plaque grown under 5% CO2 conditions, but not when grown under anaerobic conditions, and yet anaerobic cultures are still responsive to AHLs. QS signal disruption using lactonases leads to changes in microbial population structures in both planktonic and biofilm states, changes that are dependent on the substrate preference of the used lactonase but mainly result in the increase in the abundance of commensal and pioneer colonizer species. Remarkably, the opposite manipulation, that is the addition of exogenous AHLs increases the abundance of late colonizer bacterial species. Hence, this work highlights the importance of AHL-mediated QS in dental plaque communities, its potential different roles in anaerobic and aerobic parts of dental plaque, and underscores the potential of QS interference in the control of periodontal diseases