Energy scaling of femtosecond laser pulses has a lot of applications in nanoscale micromachining, precision time-resolution spectroscopy, high-harmonic generation, surgery, etc. Besides applied sciences and technology, there are fundamental applications of energy harvesting at femtosecond scale. In particular, it is possible to study and control intra-atom and molecular dynamics at attosecond level as well as to map the quantum processes directly with unprecedented spatial and temporal resolution. This "mesoscopic" union of classical and quantum phenomena provides with new insights into fundamental issues of quantum mechanics of open systems including possible application in the field of quantum computing. In this work, we consider a theory of femtosecond pulse energy harvesting using the dissipative soliton generation in both solid-state and fiber mode-locked lasers and the femtosecond pulse enhancement in an external resonator. The femtosecond pulse energy, width, and spectrum scaling laws are presented in the explicit and physically meaningful form.The second approach is based on the energy storing in an external high-Q resonator (so-called enhancement resonator, ER) coupled synchronously with a femtosecond pulse oscillator [26][27][28]. This simple idea faces difficulties when it is realized on a femtosecond scale because nonlinear effects and group-delay dispersion (GDD) tend to destroy a synchronization between a laser and ER. These issues will be outlined, and some modifications of ER technique will be proposed.
DS energy scalingThe DS energy and width scaling are connected closely with a duality between amplification of the maximum number of laser modes and simultaneous spectral condensation, i.e., the concentration High Power Laser Systems